Thursday, 15 June 2017

Millimeter-Wave Technology: Highly Sensitive Tracking Nose in Space

Millimeter-Wave Technology

Low Power Millimeter-Wave Amplifier

It was recently announced by Hiroshima University and Mie Fujitsu Semiconductor Limited – MIFS, the development of a low power millimetre wave amplifier which tends to feed on 0.5 V power supply, covering the frequency range from 80 GHz to 106 GHz. It had been invented utilising Deeply Depleted Channel – DDC technology of MIFS and is the first W-band amplifier (75-110GHz) which operates with low power supply voltage.

 Technology details will be presented at the IEEE Radio Frequency Integrated Circuits Symposium – RFIC 2016 which was from June 4th to 6th in Honolulu, Hawaii. The W-band is said to cover frequencies utilised by automotive radars. Radars with millimetre-wave beam would be essential for sophisticated driver-assistance and self-driving to scan capability which can `see’ in day as well as night conditions as well as in adverse weather situations.

 This type of phased array would comprise of up to hundreds of transmitters and receivers. Since battery-powered cars tend to be more common, it is vital that these circuits have a tendency to be low power and lowering the power-supply voltage seems to be the most effective means of achieving the same. But transistor performance tends to fall with voltage and W-band amplifier has not operated so far as low as 0.5 V.

High-Performance Silicon MOS Transistors

A W-band amplifier at 0.5 V had been successfully demonstrated by the team of researchers by bringing together DDC technology of MIFS and design techniques created by Hiroshima University. The DDC technology provides high-performance silicon MOS transistors also at low voltages and is presently made available as a 55-nm CMOS process from MIFS.

 Moreover, the design techniques tend to enhance transistor as well as circuit performance at millimetre-wave regularities. A graduate School of Advance Sciences of Matter, Hiroshima University, Professor Minoru Fijishima had commented that `now seriously low power W-band circuits really seem possible, they would think about what can be done with them. Applications aren’t restricted to automotive radars and high-speed communication between base stations.

 What if one had radar on their smartphone? Presently smartphones tend to sense things already such as acceleration, audible sound, and visible light together with the magnetic field of the Earth. However the only active searching device is that tiny LED – light emitting diode, which can brighten at best a few meters.

W-Band Amplifier - Reliability

He further stated that by adding millimetre-wave radar on your smartphone, it does not have to be a imaginary main radar that tends to sense waves reflected back but your smartphone could respond to waves from the radar of your friend, sending some signals back to them.

 A new set of applications can be developed comprising of games. Professor Fujishima further added that another significance of our 0.5 V W-band amplifier is reliability and the researchers are aware that they are long lasting. They tend to degrade as one measure them, within days or hours and not years due to the supposed hot-carrier effects.

The 0.5 V supply voltage is said to reduce hot-carrier generation, considerably. In comparison to conventional SMOS the DDC transistors provide amazing performance in low-power processes. The research group intends to progress in exploring the possibility of low-voltage millimetre-wave CMOS circuits.

No comments:

Post a Comment

Note: only a member of this blog may post a comment.