Showing posts with label MIT. Show all posts
Showing posts with label MIT. Show all posts

Wednesday, 15 February 2017

Engineers Harness Stomach Acid to Power Tiny Sensors

Since the period of ancient civilization to the contemporary world; the health sector is having a place in the center of the developments, as this is attached to the human race and their well-being. The scientific and technological advancements also paved the way for some of the major discoveries or inventions in the medical science and its allied departments, which are collectively helping us in countering the attack of various ailments.

While the research and development are going on in the different segment of the medical science, at the same time, some of the major breakthroughs have taken place in the health engineering sector, which is having real importance in the treatment of some of the major diseases.

Researchers at the MIT, Women's Hospital and Brigham have together designed and developed a tiny voltaic cell, which can be sustained by the most destructive acidic fluids inside the stomach. This system is able to generate sufficient power, which can be helpful in running small sensors and drug delivery devices and able to resides inside the gastrointestinal channel for a longer period of time.

Issues to be Noted

Although there are other batteries, but this kind of power is having the potential of offering safer and cheapest possible alternative to the existing batteries, which are now being in use to power such kinds of devices, claimed by the researchers. It is often found that traditional power batteries get damaged due to intestinal acidic fluids and the respective device failed to operate according to the need, which causes lots of problems for the person concerned.

Now the answer to this problem is being designed by the scientists in the form of these voltaic cells, which is able to save itself from any kind of vulnerable fluid attacks. Two eminent researchers in this field; Giovanni Traverso, the research affiliate engaged in the prestigious Koch Institute for Integrative Cancer Research and Robert Langer, the David H. Koch Institute Professor at the MIT, have designed, built and tested some of the major devices in past, which can be of great help in sensing physiological conditions like heart rate, temperature, breathing rate and more importantly to deliver drugs, with an intention to treat the specific diseases.


On the basis of research and inferences, made by the researchers, this unique development of the device can be of great influence on the search of the new generation electronic ingestible tablets, which will enable magical means that could monitor the basic health of the patient or in treating the diseases.

While there are possible risks in the traditional batterie; these new small voltaic cells are having the potential that can overcome the problem of getting destructed by intestinal fluids thus help the medical devices, planted inside the human body, mentioned by the specialists in this field.

 It can be noted that the study team took the inspiration of this invention from a simple variation of the voltaic cell, popularly known as the lemon battery, which is having two electrodes, with a copper penny and the galvanized nail - that stuck in lemon.

Monday, 26 December 2016

Movable Micro Platform Floats on a Sea of Droplets

The popularity of small consumer electronics and ever growing rise of their shipments has brought the need of bringing ever-evolving advancement in the technologies. The production of electronic chips and other devices rely on the microelectronic mechanical systems or commonly referred as MEMs which are essentially are tiny machines which help in enhancing the abilities of those electronic devices.

A team of researchers at MIT had come up with an innovative way of ensuring that the movable part of the machine doesn’t get in touch with each other. This will ensure the major source of wear, tear and eventually failing of the electronic device. In this new invention a layer of liquid droplets were used to support a tiny yet movable platform which helps floating the droplets at top of it.

The movement of the platform can easily be controlled effectively and it can also be utilized to alter the dimensions of the droplets by raising, lowering as well as tilting the platform. Their finding has been published in Applied Physics Letters and it has been coauthored by MIT team which includes Daniel Preston along with six others.


How this new system works? 

In this system the droplets way of interacting with the below them is altered as per the need of the hour and it is governed by a scientific a characteristic which is called contact angle. The contact angle specifically helps in measuring how steep the edge of the droplet when it meets with the surface. The usage of droplets will help in tuning across a whole range of the device by applying variable voltage to the surface.

The research team behind this invention is filled with graduate students from MIT namely Ariel Anders and Yangying Zhu and an undergraduate student by the name DingRan Dai. Their work was extensively supported by the Office of Naval Research and the National Science Foundation.

How this droplet platform was created? 

Researchers came with a smart solution to maintain the position of droplets by allowing them to slide around through the treating the underside of the floating platform. Researchers have created the floating surface with small circles of hydrophilic material. But researchers have been able to get the droplets in their place by securely pinning it to the water attracting surface. This ultimately helps in keeping the platform securely.
During the initial testing of this device researchers found that they were able to keep the droplets in the vertical positioning up to the level of 10 microns.

The future application of the droplets

In practical this approach will help in offering simple and cost effective solution to the manufacturers which is great benefit over the existing techniques present in the industry. One of the assistant professors at Centre for Nano Science and Engineering present the Indian Institute of Science named Prosenjit Sen has further elaborated the best thing offered by the droplets is that it offers a degree of vibration isolation which is sorely missed in the solid stages.

Monday, 17 October 2016

Meet Luigi MIT's Sewer Scouring Robot


Luigi – Sewer Trawling Robot

A sewer-trawling robot has been created by Underworlds, a project from Senseable City Lab of MIT which has been designed in connecting the gold mine of information prowling in the sewer.The robot in question is known as Luigi and up to now, has been deployed underground in Cambridge, Massachusetts; Boston and Kuwait as a part of an experimental program which could be spun out in various cities worldwide.

Scientists are of the belief that on researching fecal matter they would be capable of envisaging the spread of infectious diseases, provide an image of the collective health of the community together with influence policy. The Underground project, launched in 2015, has been bringing experts together from engineering, public health and biology sectors.

Carol Ratti, MIT professor, co-principal investigator and founder of Senseable City Lab had commented that `the name (Underworlds) tends to highlight the rich amount of insights hidden in our cities and in this case in sewage’. Scientists can monitor urban health patterns and diabetes, analyse drug usage as well as identify antibiotic-resistant bacteria, by sampling and interpreting human waste.

Biomarkers in Human Waste – Insight in Infectious Diseases

Co-principal investigator of Underworlds and director of the Alm Lab, Eric Alm had explained that ` we all tend to flush valuable health data in the toilet. Sewers tend to signify an exceptional opportunity where health data from everyone in a community is assembled together.

With the provision of biomarkers in human waste, they are in a position of obtaining some insight regarding infectious diseases like flu strains, which has ultimately made it possible for the scientists to expect and alleviate epidemics. Collection of fecal samples is not really a desirable task.

 Ratti recalls that initially the sampling method had been very `low-tech’ and the same was lowered to a 20-foot pole with a bottle taped to the end of it in a manhole and the sample had been scooped out. Sampling waste by hand was not enjoyable and hence they started developing the robots.

To quicken things up, the team had installed a large pump at street level. He commented that all these methods seemed to be quite messy. It was then that the first automated sewage-scouring robot, Mario had come to the rescue.

Nintendo – First Generation Model

Named after the famous plumber, Nintendo, the first generation model updated the process though was not adequately fast. Then came in Luigi, which has been much more compact and economical wherein the new model has enabled the team to streamline the collection process.

Luigi measuring around 3feet long and 3 inches in diameter comes with a motor, pump together with a filter. In order to get the task done, the remote-controlled robot tends to descend from street level to the waste water and seizes the bacteria by pumping the water through a filtration system.

 On obtaining the samples Luigi tends to return to street level for refining and dispensation. Ratti has stated that usually the examination of sewage is carried out in the treatment plants beyond the cities which tend to lose the precise data owing to the time in transport.

However they are capable of beginning the filtration process of fecal and urinary matter in situ. Moreover accumulating fresh sample seems to be critical since gut bacteria tend to die off as soon as they enter the sewer system.

Wednesday, 27 April 2016

MIT's new Chronos System Promises Precise Wi-Fi Tracking


Chronos – Wireless Localization Technology

Several users tend to use Wi-Fi to browse social media, check emails and watch videos. However according to Dan Misener, Radio technology columnist, researchers at MIT have invented something known as Chronos which is the latest way of using Wi-Fi in tracking the exact position down to the centimetre. Chronos is a `wireless localization’ technology or a Wi-Fi positioning system and is essentially a method of utilising Wi-Fi in figuring out where you are.

There are various means of doing this though Chronos tends to work by measuring the time it may take for a signal to travel from one wireless device to another device. For instance, if you have a smartphone and it is connected to a wireless router, the router tends to send information to the phone. The phone receives the same and then sends back a signal.

On measuring the time taken and by applying some calculation to the signal, one can determine where the smartphone is with regards to the router, the distance and the angle. In many ways, it tends to be the same way how radar or sonar systems seem to work. Chronos could be considered as a way to turn a regular Wi-Fi router into a kind of radar system which can distinguish objects and where they could be in the world.

Difference is Accuracy

The big difference is the accuracy. Customers-grade GPS tend to pinpoint you within a few metres distance but Chronos system tends to locate you within tens of centimetres. Moreover there are instances where GPS sometimes does not function at all like in underground or when one is indoors. Chronos tends to work anywhere within a Wi-Fi router range.

There are various other Wi-Fi based location system and are often utilised in airports, hotels and shopping mall to track foot traffic. U.S. malls tend to use shopper’s cell phones to track them, but those systems need several access point and many routers to cover a large area and triangulate the location of someone.

The distinctive thing regarding Chronos is that it only needs a single access point, a single router and one can set this up at home or a small business without incurring much expense.

Utilised in Locating Lost Device within the Home

The researchers have also informed that Chronos tends to be 20 times more accurate than the prevailing systems. One reason for using it in home is `home automation’ wherein there is a rise of the smart homes which tends to respond to who is in them.

Hence knowing who is at home and where people are within a home could be useful information. In a demonstration, the researchers had shown how Chronos tends to accurately identify which room a person was in 94% of the time. This device could also be utilised in locating a lost device within the home which could be helpful whenever a phone or a tablet would be misplaced.

Chronos can be used in controlling who gets to access the Wi-Fi, which could be useful for small businesses. Deepak Vasisht, one of the MIT researchers had informed at last month’s symposium, that if one walks into a Starbucks, they tend to get free Wi-Fi, but if one talks to them, they inform that they are very much keen in restricting free Wi-Fi access only to their customers and do not want to give free Wi-Fi to their neighbours which could end up causing congestion for their own customers. Hence a coffee shop could use Chronos to cut off Wi-Fi freeloaders.