Tuesday 4 July 2017

Harvard Scientists Use Simple Materials to Create Semi Soft Robots

Biologically Inspired Soft Robots


George Whitesides towards the start of the decade had assisted in rewriting the rules of what a machine could be with the improvement of biologically inspired soft robots and is now ready to rewrite it once again with the support of some plastic drinking straws. Whitesides together with Alex Nemiroski a former postdoctoral fellow in Harvard lab of Whitesides had been encouraged by arthropod insects and spiders and have developed a kind of semi-soft robot which is capable of standing and walking.

 The team has also developed a robotic water strider with the skill of pushing itself along the liquid surface. The robots have been defined in a recent paper published in the journal Soft Robotics. The new robots unlike the earlier generations of soft robots that could stand and walk uncomfortably by filling air chambers in their bodies are designed to be extremely quicker.

The researchers are expecting that the robots would finally be utilised in search operations, even though practical applications seems to be far away, in an event of natural calamities or in conflict zones. The Woodford L and Ann A. Flowers University Professor at Harvard, Whitesides stated that if one looks around the world, there are plenty of things like spiders and insects that are very agile.

Flexible Organisms on Planet


They can move rapidly, climb on various items and are capable of doing things which huge hard robot are unable to do due to their weight and form factor. They are among the most flexible organisms on the planet and the question was how we can build something like that.

The answer from Nemiroski was that it came in the form of one’s average drinking straw. He informed that it had all began from an observation which George had made that polypropylene tubes have an excellent strength-to-weight ratio. This gave rise to developing something which has more structural support than virtuously soft robots tend to have.

 That has been the building block and then they got inspiration from arthropods to figure out how to make a joint and how to use the tubes as an exoskeleton. After that there was a question of how far one’s imagination can go and once you have a Lego brick, what type of castle can one build with it. He added that what they built was a surprisingly simple joint.

Whitesides, with Nemiroski had started by cutting a notch in the straws enabling them to bend. The scientists then inserted short lengths of tubing which on inflation forced the joints to spread. A rubber tendon linked on either side then caused the joint to retract when the tubing flattened.

Microcontroller Run By Arduino


The team equipped with the simple concept, built a one-legged robot capable of crawling and moved up in intricacy as they added a second and later a third leg enabling the robot to stand on its own. Nemiroski stated that with every new level of system complexity they would have to go back to the original joint, making modifications in building it to be capable of exerting more force or to be capable of supporting the weight of larger robots.

Eventually when they graduated to six- or eight- legged arthrobots, enabling them to walk, became a challenge from the point of view of programming. For instance it was viewed at the way ants and spiders sequence the motion of their limbs and then attempted to figure out if the aspects of these motions were applicable to what they were doing or if the need for developing their own kind of walking tailored to these specific kinds of joints.

 Though Nemiroski together with his colleagues accomplished in directing simple robots by hand, by utilising syringes, they resorted to computers in controlling the sequencing of their limbs since the designs amplified by way of complexity. He informed that they had put together a microcontroller run by Arduino which tends to utilise valve together with a central compressor that enabled them the freedom to evolve their gait swiftly.

Motion of Joint – Binary – Simplicity of Valving System


Although Nemiroski along with his colleagues had been skilful in reproducing the distinctive `triangle’ gait of ants utilising their six-legged robot, imitating a spider-like gait, proved to be far riskier. He added that a spider has the tendency of modulating the speed which it extends and contracts its joints to carefully time which limbs are moving forward and backward at any point.

Nemiroski further added that however in our case, the motion of the joint is binary owing to the simplicity of our valving system. You either switch the valve to the pressure source to inflate the balloon in the joint and extend the limb or switch the valve to atmosphere in order to deflate the joint and thus retract the limb. In the case of the eight-legged robot, the gait compatible had to be developed with binary motion of the joints.

Though it was not a brand new gait but they could not accurately duplicate how a spider tends to move for this robot. Nemiroski stated that developing a scheme which can modify the swiftness of actuation of legs would be a useful objective for future exploration and would need programmable control over the flow rate supplied to each joint.

Academic Prototypes


Whitesides is of the belief that the techniques utilised in their development especially the use of daily off-the-shelf stuff can point the way toward future innovation, though it would take years before the robots make their way in the real world applications.

He stated that he does not see any reason to reinvent wheels and if one looks at drinking straws, they can make them all, effectively at zero cost together with great strength and so why not use them? They are academic prototypes and hence they tend to be very light weight though it would be quite easy to imagine building these with a lightweight operational polymer which could hold a considerable weight.

Nemiroski added that what is really attractive here is the simplicity and this is something George had been championing for some time and something which he grew to appreciate deeply while in his lab.

Monday 3 July 2017

Flawed Fish Jaws Shed Light on Hearing Loss in Humans

ear

Genetic Mutation – Malformation of Jaw


As per USC research in Scientific reports, the same genetic tweak which tends to cause malformed jaws in the case of fish could be responsible for some issues in hearing in humans which seems to have some evolutionary origins. Scientists are of the belief that the arrangements which seem to support the jaws of primeval ancestral fish gave rise to three tiny bones towards the middle ear of humans as well as other mammals which transmit sound vibrations where the bones are known as malleus, incus and stapes.

 In zebra fish, a genetic mutation could result in malformation of the jaw and hence USC researchers speculated if an equivalent genetic change could activate hearing defects in mice and humans. To comprehend the query, Camilla Teng, USC PhD student coordinated along with the other colleagues in the USC Stem Cell laboratories of Gage Crump, Rob Maxson, and Neil Segil and with clinical experts in radiology, audiology and genetics at the Keck School of Medicine of USC and Children’s Hospital Los Angeles.

They researched on two genes JAG1 and NOTCH2 which were mutated in most patients with Alagille syndrome - AGS which a genetic condition causing several symptoms in various parts of the body inclusive of the liver.

Hearing Loss – Deficits in Sensory Cells of Inner Ear


A person with Alagille syndrome tends to have less than normal number or small bile ducts in the liver which is the organ in the abdomen between the chest and hips that makes blood proteins, bile storing energy and nutrients, combats infection as well as eliminates harmful chemicals from the blood.At least in half of the patients, the syndrome tends to affect hearing loss besides liver, eye, heart and skeletal defects.

Though some of this could be hearing loss due to deficits in the sensory cells of the inner ear, the researchers have been speculating on the conductive hearing loss that involves essential components of the middle ear like the vibrating bones.

With the introduction of mutations in mice, the researchers observed flaws in the incus as well as the stapes bones together with corresponding hearing loss. Thereafter they attended Alagille Alliance meetings in 2011 and 2014 performing hearing tests later on 44 human patients affected with Alagille syndrome to determine if their hearing loss had been conductive, sensor in neural or mixed.

Conductive Hearing Loss


As predicted by their discoveries in zebra-fish and mice, they observed conductive hearing loss had been the most common type which had affected almost one third of all ears. The CT scans of 5 AGS patients showed a more considerable complex picture, an unexpected variety of basi cflaws in the middle ear having variable effects on hearing.

One out of the five patients had a stapes flaw precisely related with conductive hearing loss.Teng commented that their study emphasized a generally unnoticed phenotype of Alagille Syndromes.

According to Teng, the study provided some insight on generally overlooked issue arising among individuals with Alagille syndrome. She stated that if patients tend to be conscious of possible conductive hearing loss earlier in life, they can seek medical aidin time for abetter quality of life.

Peering Into Fish Brains to See How They Work

Fish

Transparent Fish – Work in the Dark


The main focus in the research of the latest group at the Kavli Institute for Systems Neuroscience is transparent fish and the capability to work in the dark. One of the important challenges faced by neuroscientists wanting to comprehend how the brain works is essentially reckoning out how the brain is wired together and how neurons tend to interact.

NTNU neuroscientists and Nobel laureates May-Britt and Edvard Moser resolved this issue by studying how to record from individual neurons in the rat brain when the rats tend to move freely in space. They utilised the recording in order to make the findings that had attained them the Nobel Prize.

They were in a position to understand that certain neurons in the entorhinal cortex fired in a manner that created a grid pattern which could be utilised in navigating like an internal GPS. Emre Yaksi, the latest teamhead of the Kavli Institute for Systems Neuroscience utilised a diverse approach to the issue of viewing what tends to go on within the brain.

Rather than studying rats or mice, Yakshi resorted to around 90 various types of genetically modified zebra-fish which he could breed in creating various fish with preferredphysiognomies.

Comprehending Universal Circuit Architectures in Brain


Young larval zebra-fish are said to be totally transparent and hence Yakshi needed only a systematic optical microscope to view what tends to occur inside their heads. Some of the fishes of Yakshi seem to have a genetic modification which makes their neurons light up while they direct signal to another neuron and he has informed that this is what tends to make circuits and connections visible to researchers.

He commented that they are interested in comprehending the universal circuit architectures in the brain which can perform interesting computation. Though fish are quite different from humans, their brains tend to have identical structures and in the end fish also have to find food, they also have to find a mate, they have to avoid dangers and they build brain circuits which can generate all these behaviours just the way humans tend to do.

When Yaksi had come to Kavli Institute in early 2015 together with a team of researchers they had a 900 kg anti-vibration table which was the size of a billiards table. The table had been big and heavy and was needed in the laboratory to reduce vibration when they had to use the highly sensitive optical microscopes to peer into the brains of the zebra-fish.

Zebra-Fish Genetically Adapted


The larval fish tend to be quite small that a slight vibration from cars or trucks passing by the streets could make the microscopes bounce away from their miniature brain targets. Zebra-fish brains are quite small, around 10,000 to 20,000 neurons which is a figure dwarfed by the human brain that tends to have an estimated neurons of 80 billion.

However the measurement that Yaksi together with his colleagues tend to make marks in huge quantities of data. According to him, a 30 minute of recording could generate data which tends to take about a week to process the same. It was for this purpose, the research group of Yaksiis a multi-disciplinary team of engineers, physicists and life scientists who seemed to be trained to develop and utilise computational tools in analysing these huge datasets.

Since few of the zebra-fish tend to be genetically adapted in order that their neurons light up with a fluorescent protein when the neurons are active, Yaksi and his colleagues tend to work frequently in low light or darkness. This is particularly obvious when he takes visitors in the subdued darkness of the laboratory where several of the fanciest microscopes are confined in boxes open towards the front, developed to restrict the amount of external light.

Research – Causes of Seizures/How Seizures Prevented


Yaksi had informed that other zebra-fish are genetically modified to shine a blue light in their brain which tends to activate certain neurons enabling the researchers to plan connections between neuron. Major part of the study being done by the group of Yaksiis basic research with findings which tend to improve our understanding of the brain computation though does not specifically have any instant clinical implications.

However, Nathalie Jurisch-Yaksi, wife and colleague of Yaksi is working with medical doctors in order to develop genetically modified zebra-fish which could be helpful in shedding light on brain disease like epilepsy.According to Yaksi, most of the people in his lab are doing basis research attempting to ask how does the brain works, how is it connected, how is it built.

 Nonetheless, Nathalie is working at NTNU with medical doctors and they are trying to reach out to clinicians. For instance he stated that if a brain disorder like epilepsy tends to have a genetic component, that same genetic mutation could be developed in the transgenic group of zebra-fish facility in order that the team could research on the causes of seizures in a diseased brain and how the seizures can be prevented.

Kavli Institute – Excellent Science Environment


The Kavli Institute had been on an institute-wider retreat, when he had come to Trondheim for interview for the position, so Yaksi had the opportunity of meeting not just group leaders but also technicians, master’s students, PhD candidates and everyone. He informed that what was most impressive besides the excellent science environment was that people had been happy and satisfied with what was being done and it was a good atmosphere.

 Though the science had been the most serious part of his decision to move to Trondheim, he informed that he was excited to be a part of the Kavli Institute since he and his wife desired to live in a smaller town as well as close to nature.

He had stated that Trondheim seems to be a unique place and one can do really good science and yet be close to nature, which was a big thing for him and his wife. Going to London or another big city was never an option and they did not desire to deal with big city life. He also informed that when May-Britt Moser had asked him at the time of his interview on what he knew regarding Scandinavia. His reply had been that he did not know much though he had added that he and his wife loved being outdoors.

Saturday 1 July 2017

Plastic 12-Bit RFID Tag and Read-Out System With Screen-Printed Antenna

Quad Industries, Agfa, Imec and TNO made an announcement recently that they established and verified a plastic 12-bit RFID tag and read-out systems with security that is screen printed. For the first time, the system combines a screen-printed antenna and a printed user interface that is based on touch, which allows the reader to operate on curved surfaces. The demonstrator has developed for applications pertaining to badge security, but also shows scope for many other applications as well such as smart packages, games that require interaction and wearables.

Compared to silicon (Si)-based identification devices, RFID tags that are made of plastic electronics have more advantages. They can be attached to curved packaging, effortlessly incorporated in everyday objects and its manufacturing is low-cost. The usual application consists of identification of items, smart food packaging, protecting the brand and badge security. A dedicated RFID reader is needed to scan the RFID tag which is usually in two centimetres of the tag. The antenna in the tag as well as the reader should both be flexible, utilising the advantages of plastic electronics to the fullest. Screen-printed antennas have been applied effectively on the top of an RFID tag but inflexible PCB-based antennas are generally used by the read-out systems. This is primarily because of the fact that the printed antenna has a poor resistance and Q-factor.

For the first time, industries like Imec, Quad Industries and Agfa have combined a screen-printed antenna in both of the items, the RFID tag as well as the read-out system. This allows the application of both these devices on a diverse range of surfaces. Quad Industries have screen-printed antennas using printing inks from Agfa.

This new technology has been demonstrated in an application pertaining to badge security. The access badge integrates the printed antenna, which is size of a credit-card, with a plastic 12-bit RFID chip, placed on plastic substrate that’s flexible. Imec’s metal-oxide thin-film transistor (TFT) technology has been used to manufacture the RFID tag. Large-area manufacturing processes are used by this technology that makes large-scale production at a low cost possible.

The read-out system includes uniquely printed functionality at diverse levels. To begin with, an RFID read-out antenna is made by screen-printing on a plastic film, making room for best possible integration on flat, curved or 3-D shaped reading surfaces. Also, a fully printed touch screen interface with numerical keypad has been placed between the cover lens and the display, which allows any user without a badge to enter the building by punching in a numerical code. Highly transparent screen-printed inks have been used to print these printed touch screen.

There are recently developed Ag inks which are nanoparticle based that makes lower resistances over conventional Ag-flake based inks achievable which in turn enables integrating new functionalities directly by screen printing. In addition to this, the antenna is printed at the same level as the printed touch screen which results in direct, more economical combination of the printed antenna and the customized touch screen in the device that’s the reader.

This technology allows for economical screen-printing manufacturing, is effortlessly customizable and eco-friendly and allows direct chip integration on many substrates which includes plastics, paper, etc. This technology also sees a promising use in smart packaging, smart PCB and smart gaming.

Sensor Solution: Sensor Boutique for Early Adopters

Sensor Boutique
It is known that a very individual fraction of infrared light is absorbed by every chemical substance. This absorption can be used for recognising substances with the help of optical methods, which is almost like the concept of a human fingerprint.

To elaborate this concept, when the infrared radiation, that falls within a certain range of wavelength, are absorbed by molecules, they are animated to a higher level of vibration, in which they rotate and vibrate in a typical and distinctive pattern or rather in a “fingerprint” pattern. These patterns can be used for identifying specific chemical species. Such kind of a method is used, let’s say, for example, in the chemical industry but also has its uses in the health sector or in criminal investigation. A company often needs an individually tailored sensor solution if it plans a new project.

EU-funded pilot line called MIRPHAB (Mid InfraRedPhotonics devices fABrication for chemical sensing and spectroscopic applications) support companies that in search for a suitable system and help in the development of sensor technology and measurement technology in mid-infrared (MIR). Participating in this project is the Fraunhofer Institute for Applied Solid State Physics IAF.

Pilot line for ideal spectroscopy solutions


A company has very individual needs if it is looking for a sensor solution, for example, if it has to identify a particular substance in a production process. This begins with the substances that have to be recorded to the number of sensors required up to the speed of the process of production.Considering most of the cases, a custom-made solution that suits all does not suffice and various suppliers are required for the purpose of developing the optimal individual solution.Here is where MIRPHAB comes into picture and proves to be very useful.

Leading European research institutes and companies belonging to the MIR environment have collaborated to provide customers with a custom-made and best suited offers made from a single source. Parties that are interested can get in touch with a central contact person, who can then make a compilation of the best solutions possible from the MIRPHAB members component portfolio as per the modular principle.

EU funding has supported MIRPHAB in the development of the individual MIR sensor solution within the framework, in order to fortify the European industry in the long run and increase in its leading position in chemical analysis and sensor technology. This considerably lessens the investment costs and as a result also reduces the entry point for companies in the MIR area.

Companies that have previously faced high costs and development efforts are now looking at a high-quality MIR sensor solution as an object of interest due to its combination with the virtual infrastructure which is a development caused by MIRPHAB.Also, MIRPHAB provides companies access to the latest and modern technologies, enabling them with an added advantage as an early adopter compared to the competition.

Custom-madesource forMIR lasers


The Freiburg-basedFraunhofer Institute for Applied Solid State Physics IAF along with the Fraunhofer Institute for Photonic Microsystems IPMS situated in Dresden, is providing a central component of the MIRPHAB sensor solution. The Fraunhofer IAF is presenting the new technology of quantum cascade lasers that emanate laser light in the range of MIR. In this type of laser, the range of the wavelength of the emitted light is spectrally extensive and can be adapted as per requirement during manufacturing. To select a particular wavelength within the broad spectral range, an optical diffraction grating has to be used to choose and then coupled back into the laser chip. The wavelength can be adjusted constantly by turning the grating. This grating is created at the Fraunhofer IPMS in a scaled-down form in so-called Micro-Electro-Mechanical-System or MEMS technology.Thus it is then possible to oscillate the grating up to one kilohertz of frequency. This further enables the tuning of the laser source’s wavelength up to a thousand times per second over a large range of spectrum.
The Fraunhofer Institute for Production Technology IPT in Aachen also has involvement in MIRPHAB in order to make the manufacturing of lasers and ratings more proficient and to enhance them for pilot series fabrication.With the help of its proficiency, it changes the production of the quickly adaptable MIR laser into industrially applicable manufacturing processes.

Process exploration in actuality

Currently, there are many applications in the field of spectroscopy that are still in the category of visible or near the range of infrared and use comparatively feeble light sources. MIRPHAB provides solutions has the concept of infrared semiconductor lasers as a foundation. These have comparatively higher intensity of light thus allowing the scope for completely new applications. This results in a recording of up to 1,000 spectra per second with the help of the MIR laser source which, as an example, provides for the real time programmed monitoring and control of biotechnological processes and chemical reactions. Thus, MIRPHAB’s contribution is considered to be important and vital to the factory of the future.