Friday, 12 September 2014

A New Quantum Particle Calculation Making Waves in Scientific Field


Quantum Particle
Researcher had successfully developed a new and more advanced way of measuring the wave functions, which describe the strange behaviour of subatomic particles. With this breakthrough development the quantum computing, secure wireless communications and quantum teleportation would come closer to reality than it was ever before.

A New Beginning

There is a small realm of scientific field, whichis known as quantum mechanics. It states that the particles can exist in multiple places at once through an unusual phenomenon called superposition. And in order to describe the huge number of positions and velocities which a particle can have at any given moment is measured through the use of wave functions.

Both the quantum computing and teleportation relies on particles, which can exist in multiple places at once.

Benefit of this Remarkable Research At a Glance

Wondering how this could be utilised in advancing the computing powers of the machines? Well the superposition of the particles would allow the computers in performing calculations and transferring information at a much faster rate than the conventional computers.

How This Could Be Achieved

Quantum computing and quantum teleportation would need huge systems with a large amount of quantum particles with the ability to interact to create many dimensions. When this is achieved in the proper order and in efficient manner then only both of it could turn into reality.

A lead researcher on this finding also stated that the huge multidimensional systems have complicated wave functions, which cannot be measured earlier due to inefficient traditional methods. But with the new method it is highly possible to calculate wave functions more accurately and faster and it will be beneficial for scientists in developing quantum technology for new generation.

How the Wave Functions are Calculated?

Earlier the wave function of a quantum system was calculated by taking a huge number of measurements and then estimating a function or an equation, which was best, suited for all the measurements. This old technique was called ‘direct measurement’, which used to measure the wave function by weakly measuring position and strongly measuring the momentum. This technique was suited only for the small systems with few dimensions but as with the advancement, the system grew bigger and bigger it became more and more difficult to accurately measure the wave functions.

Therefore, this new technique is developed called ‘compressed direct measurement’, which uses a series of random measurements of the position and momentum of the particles in their quantum state. Then an algorithm is assigned which finds the wave function, which is best, suited for a number of measurements. This new technique is about 350 times faster and just requires 20 percent of the measurements than the old one.

The Era of Quantum Tech

Researchers have asserted that the new direct measurement technique can mould the way of success for quantum computing. The regular computers handle ‘bits’ of information while a quantum computer could ‘qubits’ of information, which could be represented by either zero or one at the same time. Compressed direct measurement can help in reaching terahertz speed, which will give incredible speed in transferring data in the form T-rays. These waves have the ability to pass through most materials like paper, clothing etc. However, it should also be noted that these waves are difficult to detect and manipulate, therefore scientists would find difficulty in harnessing them into digital media. Furthermore, quantum is still a new idea in technology as well as an emerging field it will take time before becoming reality.

No comments:

Post a comment

Note: only a member of this blog may post a comment.